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Abstract. A novel differential XAFS approach has been developed which allows the determination of small distortions in 
coordination geometry (distortions in bond lengths and angles) about the absorber. The approach requires taking the 
difference, A%, between the XAFS of the sample and a reference material. The Fourier transform of Ax directly reveals the 
average of the altered path lengths between the sample and the reference. More importantly, the amplitude of Ax directly 
reflects the magnitude of the changes in the bond lengths or angles. FEFF6 calculations verify this approach, and help to 
interpret the data. Application of this technique has been made to the zincate ion in an alkaline Zn battery, where small 
distortions from the Td geometry resulting from ion pair interactions can be determined directly 

1. INTRODUCTION 

In general, only the large single scattering (SS) contributions in x-ray absorption fine structure (XAFS) are utilized for 
determination of the structure of a material. These contributions accurately provide information on the number of atoms and 
the bond length to the first, and often higher, coordination shell(s) about the absorber. The multiple scattering (MS) 
contributions can provide even more information, such as the coordination geometry and S-A-S (scatterer-absorber-scatterer) 
bond angles. The full potential of XAFS has generally not been realized because these MS contributions are often masked by 
the larger SS contributions and their phase and amplitude satellites, or by the many other MS contributions. In this work, we 
have developed a novel differential XAFS approach which under certain circumstances allows the isolation of the critical MS 
contributions so that they can be utilized to provide a determination of small distortions in coordination geometry (distortions 
in bond lengths and angles) about the absorber. 

2. RESULTS 

The method depends on taking the difference between the XAFS of the sample and a similar reference material. Assuming u 
= uo(l+x), we remove the "background" m, utilizing an iterative spline technique [1]. Then the method can be simply 
simulated by the expression 

Ax = Ai sinij)] - A2 sin<j>2  = (A,+8A) sin(<t>a+8<{>) - (Aa-SA) sin(cfaa-5cp) (1) 

where A, = (A]+A2)/2, <j>a = (<p! +tb2)/2 and 5A= (Ai-A2)/2, 5(j> = (<j)i-<j>2)/2. Using simple trigonometric relations, (1) reduces to 

Ax = 28Acos8<j> sin<j>a + 2Aasin8((> cos<|>a   ~ 2Aa [ (8A/A,) sinc|>a + 8(() cos<j)a] = 2A, B sin(<f>a+a), (2) 

where B = sqrt[ (8A/A)2 + (8ij))2] and a = tan"' [A8ij)/8AJ. The latter two expressions in Eq. (2) are valid only for small 5<j>. To 
first order 8<(> = kAR and SA/A = k2Acr revealing that the amplitude of A% is directly proportional to the change in the path 
length AR or the Debye Waller factor. ACT. 

As an application of this approach, we consider the Zn K-edge XAFS spectra for zincate ion in solution prepared at 
0.75 M in ZnO and 8.4 M in MOH where M is either Li, Na. K. or Rb [2]. Each experimental XAFS spectrum was 
normalized at 50 eV and slight energy differences believed to be due to monochromator resolution were taken out. Figure 1 
shows a comparison of the amplitude of the Fourier transform of the k~yv function obtained in the normal fashion for 
ZnO/NaOH with that obtained in the "differential" technique which involves the Fourier transform of the difference. k2Ax, 
between ZnO in NaOH minus that for the reference. ZnO in RbOH. These later two spectra are slightly different because of 
the ion-pair interaction between the tetrahedral Zn(OH),,:' ion and two hydrated cations M"(H20)x (M = Na or Rb), as shown 
in Fig. 2. Thus k2Ax is non-zero because of the weak hydrogen bonds existing between the OH groups on the zincate ion and 
the water in the hydrated cation, which can cause distortion of the tetrahedral zincate symmetry. In instances where only the 
bond angles change, the single scattering path contributions (here the Zn-OH path) nearly cancel along with the phase and 
amplitude satellite peaks. Further the many MS contributions arising from paths which did not change also cancel,   allowing 
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Figure 1. Comparison of the Fourier transform of 
k\ for ZnO in NaOH with k2A-/ for RbOH-MOH. 

Figure 2: Zn(OH)4
2"-[H20-rvf ]2     ion pair interaction model. 

Spheres in order of increasing size are H, O, Zn, and itvf". 

isolation of the critical double and triple scattering paths [e.g., Zn02,(the triangular path from Zn to one OH to a neighboring 
OH back to the Zn] and Zn-O-M [a co-linear path from the O in the water of hydration to the metal cation and return via a 2. 
3 ,or 4 step scattering path]. Since the first path necessarily traverses the O-Zn-0 angle, the changes in the tetrahedral 
symmetry (geometries) resulting from the ion-ion interaction can be directly determined. In general, when one of the bond 
lengths changes relative to the reference, single scattering paths may dominate; but only for the bond length which changed. 

Figure 1 clearly shows that the amplitude of nearly all of the peaks in k2A% increase with the size of the cation, 
indicating that the strength of the hydrogen bonding increases with surface charge density on the metal cation, i.e. the smaller 
cations (e.g., Li+) are able to "snuggle" in more closely to the zincate ion. Direct non-linear least squares fitting to these 
peaks in R-space utilizing phase and amplitude parameters from FEFF6 calculations 13] indicates that the normal tetrahedral 
zincate ion is increasingly distorted as the cation radius decreases, with the total distortion for Li being larger than 10°. The 
Zn - OH: distance remains relatively constant at 3A° (it is dictated by the more covalent OH-OH; hydrogen bond) and the Zn- 
M distance increases with cation size from 5 to 6A° (Li to Rb), as expected consistent with the ionic radius of the metal ion. 

Zinc is a commonly used battery electrode, and zinc primary batteries have found numerous applications. The 
problem associated with the Zn electrode is its short and unpredictable life time associated with the precipitation of ZnO from 
the electrolyte^]. This ZnO precipitate causes the effective mass loss of Zn, reduces electrical contact between the electrode 
and electrolyte, and eventually destroys battery life., The addition of Lf proves to be an effective method to prolonging 
electrode life time by preventing ZnO precipitation. However there is little understanding of how the Li ion does this 15]. 
The results'here give direct evidence that, the smaller hydrated cations form a stronger complex with the zincate ion. We 
believe this complex formation also occurs at the ends of the polymer chains, thus either stabilizing the Zn(OH)2 chains, or 
preventing further agglomeration of the ZnO chains. It is found from practical experience that optimal concentrations of Li 
already occur at Li/Zn = 1/25 [5]. This strongly indicates to us that what is important is the stabilization of the ends of the 
polymer chains, since we do not believe that one Li ion could keep 25 zincate ions from polymerizing. This polymerization is 
reversible as long as complete agglomeration to ZnO precipitates is prevented. 
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